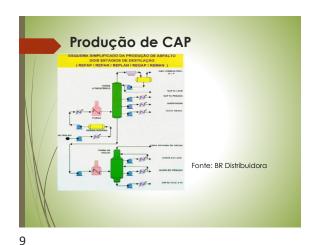


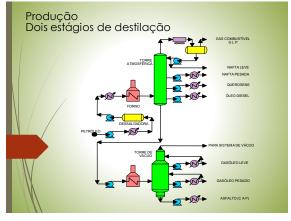
Refinarias da Petrobrás Petróleo Bruto ou Cru Praticamente, todo o asfalto em uso hoje em dia é obtido do processamento de petróleo bruto (ou cru). Muitas refinarias são localizadas próximas a locais com transporte por água, ou supridos por dutos a partir de terminais marítimos.

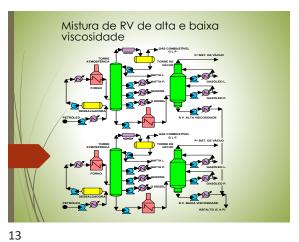
3

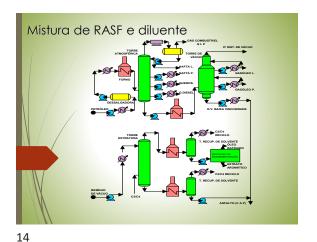

ORIGEM DO PETRÓLEO CRU	Massa específica a 15°C (kg/m³)	TEOR DE ASFALTENOS (%)	Resíduo em BETUME (% d massa sobre bruto)
Boscan (Venezuela)	1.005	10,5	79
Rospomare	983	17,4	75
Bachaquero	975	6,4	49
Tia Juana	897	4,0	30
Safaniya	892	4,5	36
Árabe médio	891	3,5	34
Kuwait	867	1,4	19
Árabe leve	858	1,3	19
Kirkuk	843	2,1	18 Lombardi, 1983

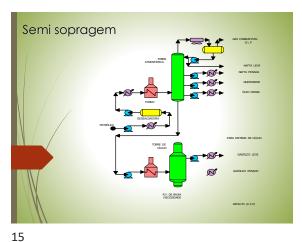
COMPOSIÇÃO DO PETRÓLEO ■ C1 e C2 – GN até 40°C ■ C3 a C5 – GLP até 40°C C6 a C10 – Nafta (solventes, gasolina – 40°C a 180°C) ■ C11 a C12 - querosene - 180 °C - 230 °C ■ C13 a C17 – óleo diesel – 230 °C – 300 °C C18 a C25 – gasolina, óleos lubrificantes, óleos combustíveis, parafina – 300 °C – 400 °C ■ C26 – C38 – óleos lubrificantes – 400°C - 520°C C38 – asfalto – resíduo Somente alguns tipos de petróleo são apropriados para a obtenção de asfalto

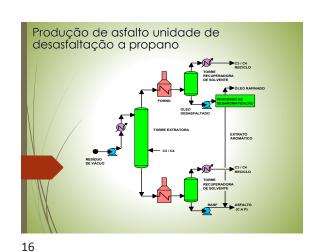
5 6

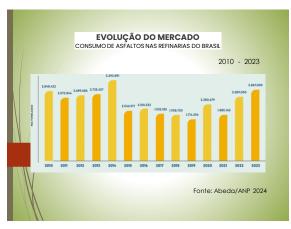


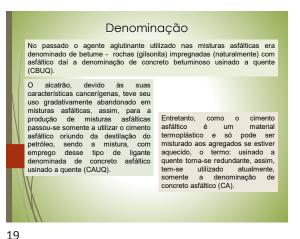



10






11 12





Cimento Asfáltico de Petróleo - CAP De maneira simplificada, o asfalto pode ser representado por três componentes principais: uma componente maltênica (~78%), uma asfaltênica (~20%) e uma resina (~2%),

22

21

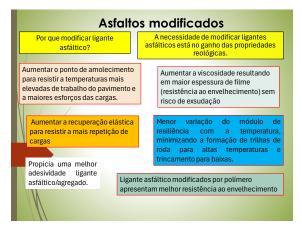
23 24

Cimento Asfáltico de Petróleo - CAP

- CAP 30/45,
- CAP 50/70,
- CAP 85/100e
- CAP 150/200,

Constituindo-se em produtos básicos para a produção de outros materiais asfálticos, como, por exemplo:

- os asfaltos diluidos de petróleo,
- as emulsões,
- os asfaltos modificados por polímeros e
- os asfaltos modificados por borracha moída de pneus


A Especificação ANP – Resolução número 19, de 11 de julho de 2005 e Regulamento Técnico número 3/2005 CAP 30-45 CAP 50-70 CAP 85-100 ASTM ABNT Penetração (100g, 5s, 25, °C) 30 a 45 50 a 70 85 a 100 150 a 200 NBR 6576 D 5 52 NBR 6560 D 36 192 a 177°C. SP 21 min 76 a 285 57 a 285 28 a 114 28 a 114 (-1,5) a (+0,7) (-1,5) a (+0,7) (-1,5) a (+0,7) (-1,5) a (+0,7) Ponto de Fulgor mín °C 235 235 235 235 D 92 99,5 99,5 99,5 99,5 D 2042 60 100

25 26

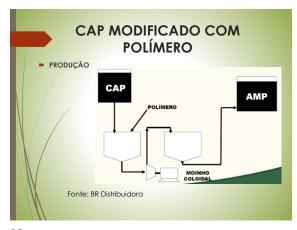
	Características	Unidade	Limites					Métodos		
			CAP 30-45	CAP 50-70	CAP 85-100	CAP 150-20	00 ABN	ASTN		
	Efeito calor e ar a 163 °C, 85 mín - RTFOT									
	Variação em massa, máx	% massa	0,5	0,5	0,5	0,5		D 2872		
	Ductilidade a 25 °C	cm	10	20	50	50	NBR 6293	D113		
	Aumento do Ponto de Amolecimento	°C	8	8	8	8	NBR 6560	D 36		
1	Penetração Retida (*)	%	60	55	55	50	NBR 6576	D 5		
1	(*) relação entre a penetração após o efeito do calor e do ar em estufa RTFOT e a penetração antes do									

27

29 30

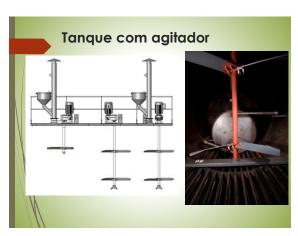
Asfaltos modificados

Tipos de polímeros empregados para modificação de ligante asfáltico para fins rodoviários. A classificação de Disnmem, (DNER 1998):


- a) termorrígidos: são aqueles que não se fundem, degradam numa temperatura limite e <u>endurecem</u> irreversivelmente quando_aquecidos_a uma temperatura dependente de sua estrutura química. Como por exemplo: <u>resina epóxi</u>, poliuretano, (garrafa pet) etc.
- b) **termoplásticos**: são aqueles que se fundem e se tornam maleáveis reversivelmente quando aquecidos. São incorporados aos asfaltos à alta temperatura (LEITE, 1999).

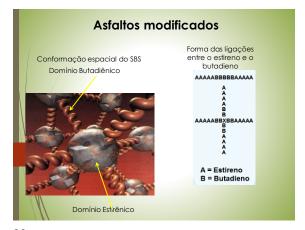
 Como por exemplo, tem-se o polietileno, polipropileno atático e o policloreto de vinila (EVA), metacrilato de glicidil.

Asfaltos modificados


- c) elastômeros: são aqueles que quando aquecidos se decompõem antes de amolecer, e apresentam propriedades elásticas que lembram a borracha. Como por exemplo, tem-se Stireno-butadieno-rubber (SBR) (DNER, 1998). trata-se de um polímero que é apresentado em meio aquoso e devido às suas características é utilizado em menor escala em modificações de ligante asfáltico.
- d) elastômero-termoplásticos: são aqueles que ao serem aquecidos se comportam como termoplásticos, mas em temperaturas mais baixas apresentam propriedades elásticas. Como exemplos, tem-se o SBS e o RET (DNER, 1998). Styrene-Butadiene-Styrene (SBS) é o mais empregado em modificação de ligantes.

31 32


33



35 36

Asfaltos modificados

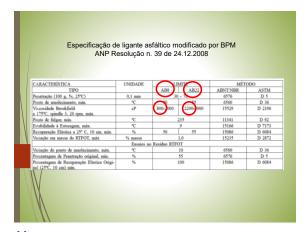
Determinação do teor de polímero em ligantes asfálticos modificados

Para se determinar a porcentagem de polímero SBS adicionado a um dado ligante asfáltico modificado é uma tarefa relativamente difícil, no processo de incorporação, ocorre uma reação química e devido a essa reação o processo de determinação não é usual.

Também existem variações quanto ao tipo de ligante asfáltico matriz, podendo existir dois tipos de ligantes asfálticos modificados por polímero SBS com mesma classificação, por exemplo, 55/75E, mas com adição de porcentagens de polímeros distintas.

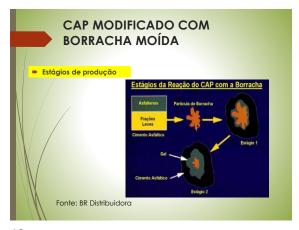
Na prática, tem-se atentado para a classe em que o ligante asfáltico modificado se enquadra e não a quantidade de polímero adicionado.

39 40



41 42

Cs ligantes asfálticos modificados por adição de BPM são denominados de fluidos pseudoplásticos quando acima de 100°C.

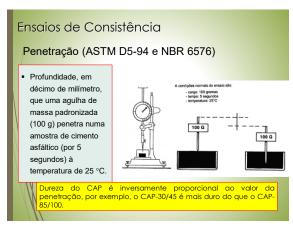

O processo de incorporação utiliza alta temperatura e alto cisalhamento que propicia a vulcanização de parte da borracha não vulcanizada no processo de industrialização do pneu, evidencia-se assim a preferência da utilização de borracha de pneus de caminhão em que, nesses pneus existem cerca de 70% de borracha em estado natural.

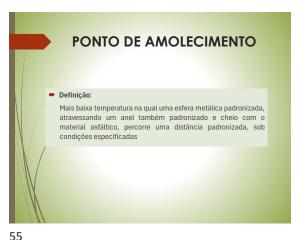
Diferentemente de pneus de veículos leves em que a porcentagem de borracha não vulcanizada é na ordem de apenas 30%.

43 44

45 46

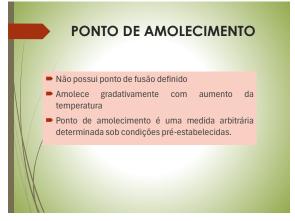
47 48

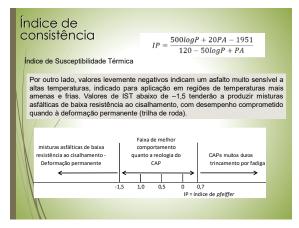


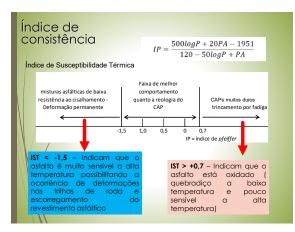


51

53 54

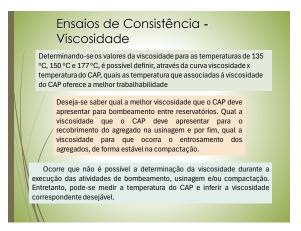




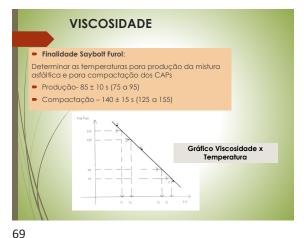


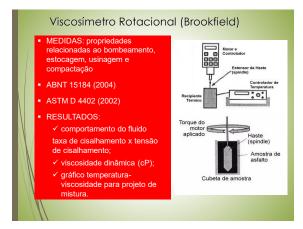
Índice de consistência $IP = \frac{500logP + 20PA - 1951}{120 - 50logP + PA}$ Indice de Susceptibilidade Térmica $IP = \frac{500logP + 20PA - 1951}{120 - 50logP + PA}$ A atual especificação brasileira admite uma variação do IST entre –1,5 a +0,7, também conhecido como índice de *pfeiffer*. Valores de IST levemente positivos indicam um asfalto mais resistente a altas temperaturas, indicado para aplicação em regiões mais quentes. Entretanto, valores maiores que +0,7 indicam CAPs oxidados ou que sofreram um processo de envelhecimento no seu manuseio. São CAPs muitos duros, que tenderão a produzir misturas asfálticas de pouca flexibilidade, com desempenho comprometido quanto ao comportamento à fadiga (trincamento).

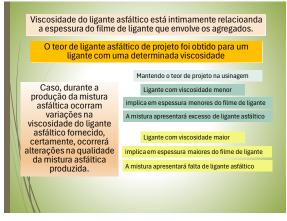
61 62

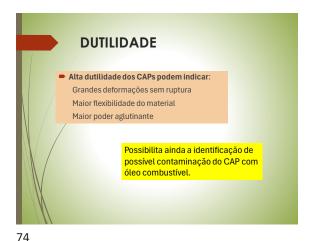


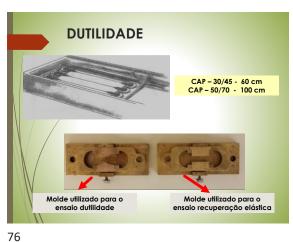
63 64



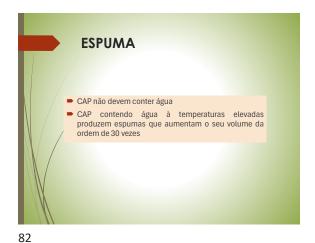

65 66

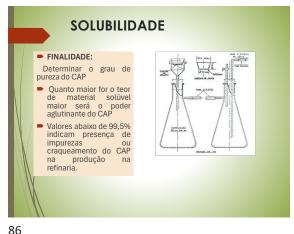


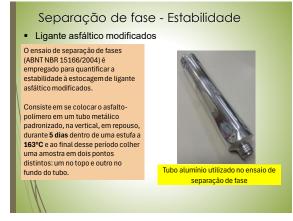


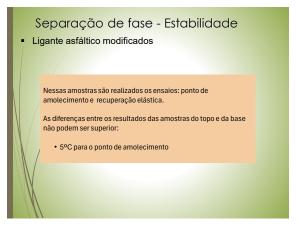


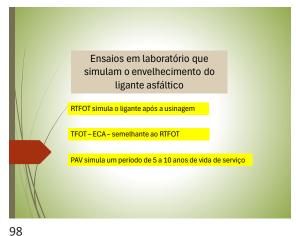
16/07/2025










93

95 96

105 106

Ensaio de massa específica do ligante

ABNT 6296
ETAPAS:

Picnômetro com asfalto e água

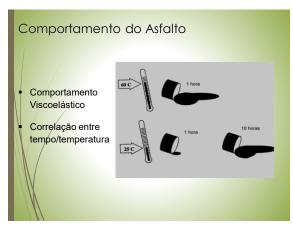
Determinação da massa do picnômetro totalmente preenchido com água a 25°C

Determinação da massa do picnômetro preenchido até a metade com asfalto a 25°C

Determinação da massa do picnômetro preenchido metade com água e metade com asfalto, a 25°C

107 108

16/07/2025



109 110

111 112

113 114